How Secure Are Multi-Word Random Passphrases?

By Bruce K. Marshall @PwdRsch

What Are Passphrases?

- Longer than passwords
- Often words separated by spaces
- Have some overlap with passwords
- Goal is to offer better security than normal passwords while also being more usable

Types of Passphrases

- Natural language phrases
- "you can do it"
- Natural language structured phrases
- "fast doorway took taco"
- Mentally chosen 'random' words
- "dell chair boring calendar"
- Securely chosen random words
- "land dear each spend"

Growing Passphrase Popularity

C. 7 Passphrases

A "passphrase" is a concatenation of words drawn from a dictionary. The dictionary is merely the collection of symbols making up the "alphabet" from which the password is generated. As an example, suppose the passphrase is made up of words drawn from a dictionary of 4, 5 and 6 letter words. There are approximately 3,7804 -letter words, 7,500 5 -letter words and 12,000 6-letter words in English. The "alphabet size" for generating passphrases is approximately 23,300 .

We can compute how many words, drawn at random from the dictionary of 23,300 words, are needed to produce a passphrase that will be resistant to exhaustive attack with the probability of 1×10^{-6}.

What is Diceware?

- Formal system for generating random word passphrases published in 1985 by Arnold Reinhold.
- Roll one die five times or five dice one time. Look up index of dice values and use corresponding word

41443

41444
41445
41446
41451
41452
41453
41454
41455
41456
41461
41462
41463
41464
41465
41466
41511
41512
41513
41514
malady
malay
male
mali
mall
malt
malta
mambo
mamma
mammal
man
mana
manama
mane
mange
mania
manic
mann
manna
manor

66623	96 th
66624	97 th
66625	98 th
66626	99 th
66631	9 th
66632	$!$
66633	$1!$
66634	"
66635	$\#$
66636	$\# \#$
66641	\$
66642	ss
66643	s
66644	s\%
66645	
66646	$($

What is XKCD 936？

correct horse battery staple

FOUR RANDOM COMMON WORDS

WAS IT TROMBONE？NO， TROUBADOR．AND ONE OF THE OS WAS A ZERO？
AND THERE WAS SOME SYMBOL．．．

DIFFICULTY TO REMEMBER： HARD
～ 44 BITS OF ENTROPY
ㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁ
 ㅁロロロロロロロロロ ㅁロロロロロロロロロロ
$2^{44}=550$ YEARS AT 1000 GUESSES／SEC

DIFFICULTY TO GUESS：
HARD

DIFFICULTY TO REMEMBER：
YOU＇VE ALREADY
MEMORIZED IT

THROUGH 20 YEARS OF EFFORT，WE＇VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THIRT ARE HARD FOR HUMANS TO REMEMBER，BUT EASY FOR COMPUTERS TO GUESS．
By Randall Monroe，Aug 2011

Attacks Against Passphrases

- Offline Passphrase Cracking
- Online Passphrase Guessing
- Shoulder Surfing
- Keystroke logging / Man-in-the-Middle / Phishing /
Social Engineering / Rubber Hose

How to Estimate Random Passphrase Strength

Possible word choices ${ }^{\wedge}$ words long

Convert to bits by taking $\log (2)$ of total

- XKCD suggests using 2,048 words $2048 \wedge 4=17,592,186,044,416=44$ bits
- Diceware has 7776 words in base wordlist 7776 ^ $5=28,430,288,029,929,700,000=64.6$ bits

How Random Passphrases Compare to Random Passwords

Wordlist	Len Words	Num	Bits
2,048	4	$1.7 \times 10^{\wedge} 13$	44
7,776	5	$2.8 \times 10^{\wedge} 19$	64.6
7,776	6	$2.2 \times 10^{\wedge} 23$	77.5
7,776	7	$1.7 \times 10^{\wedge} 27$	90.5

Charlist	Len Chars	Num	Bits
95	7	$6.9 \times 10^{\wedge 13}$	46
95	8	$6.6 \times 10^{\wedge} 15$	52.6
95	9	$6.3 \times 10^{\wedge 17}$	59
95	10	$5.9 \times 10^{\wedge} 19$	65.7
95	11	$5.7 \times 10^{\wedge} 21$	72.3

A Look at Diceware Words

- Short words = possibility of short passphrases
- User stuck with choice of using short passphrase or generating new one
- Refusing any 5 word passphrase under 14 chars eliminates 0.00037\% of possible 5 word combinations

Length	Words	\% of Total
1	52	0.7%
2	773	9.9%
3	839	10.8%
4	$2,34.5$	30.2%
5	3,136	40.3%
6	631	8.1%

Ways to Increase Passphrase Strength

- Increase number of words used
- 6 words from 9,030 word list = 78.8 bits
- Increase number of words in source word list
- 4 words from 858,000 word list $=78.8$ bits
- Modify words from their original form
- Change word case, change spelling, change separator, or apply other transformation randomly
- CORRECT:horse:battery:STAPLE

What the Shortest Passphrase You Can Safely Use?

- Diceware recommendations:
- 56 for normal use
- 6 for wireless security / file encryption
- 7-8 for 'high value' like Bitcoin wallet
- EFF echos 6 word advice
- SecureDrop uses 7 (from modified 6,800 list)
- Realistically you can use 3 word (especially modified) for lower risk apps

Passphrase Cracking Speed ESTIMATES

Wordlist	Words	Bits	TrueCrypt PBKDF2 HMAC-SHA512 + AES $\times 8$ GPU	$\frac{\text { MD5 } \times 8}{\underline{G P U}}$	Snowden Mystery Box
2,048	4	44	76 days	<1 hour	<1 hour
7,776	5	64.6	335,535 years	8.8 years	329 days
7,776	6	77.6	2.6 billion years	68,235 years	7,010 years
88,000	4	65.7	707,765 years	18.5 years	1.9 years
9,030	6	78.8	6.4 billion years	167,560 years	17,191 years

Possible Cracking Shortcuts

- Discover and exploit word acceptance bias that results in users rejecting passphrases with some specific words.
- Find a combination that happens to also match a captured natural language phrase.
- Find a combination that has been leaked in plaintext from another source.

Resistance to Passphrases

13. Don't use common words or reverse spelling of words in part of your password.

- Are not words in any language, slang, dialect, jargon, etc.
- Never use dictionary words from any language as the whole or part of your password.

DON'T USE Dictionary, Atlas, etc. words

A Strong Password should not -

- Spell a word or series of words that can be found in a standard dictionary
- Consider using a passphrase instead of a password

A passphrase is a password made up of a sequence of words with numeric and/or symbolic characters inserted throughout. A passphrase could be a lyric from a song or a favorite quote. Passphrases typically have additional

Resistance to Passphrases

- Bruce Schneier Blog Choosing Secure Passwords from March, 2014

Quoted Ars Technica article from May 2013 that reported that these passwords had been cracked: "allineedislove", "iloveyousomuch", "sleepingwithsirens", \& "i hate hackers"
"This is why the oft-cited XKCD scheme for generating passwords - string together individual words like "correcthorsebatterystaple" - is no longer good advice. The password crackers are on to this trick."

Passphrase Usability Research

- Correct Horse Battery Staple: Exploring the Usability of System-Assisted Passphrases
- No significant difference in percent of people storing passwords compared to passphrases.
- Passphrase users took median 7 seconds to enter compared to 3 seconds for passwords.
- Successful logins by passphrase non-storage participants were 47%. Compared to 58% for password. Storage groups both $=85 \%$ success.
- The passphrases (3-4 word range) had a mean length of 18.3 / 25.5 characters.

Passphrase Usability Research

- A Behavioral Analysis of Passphrase Design and Effectiveness
- Passphrase group was asked to create a 3-5 word phrase at least 16 characters in length. Resulted in an 18.2 character and 3.6 word average.
- The passphrase group experienced the lowest login failure rate at 11% (combining memory and typographical errors).

Passphrase Usability Research

- Towards Reliable Storage of 56-bit Secrets in Human Memory
- 96% of passphrase participants and 91% of random letter participants learned well enough to type from memory 3 times in a row.
- Median typing time for all 3 segments were 8.2 seconds for words and 6.1 seconds for letters.
- Entry errors for passphrases were median of 5 per user, with random letters a median of 7 .

Passphrase Field Testing

Tested the following passphrases on large web sites \& observed related usability factors:

1. level drama whoosh funny
2. suey 65 swim gain recur
3. hovel strafe m's knobs lyric perm
4. follow*RUBBER*BENEATH*natural
5. BANAL.mayan.skit
(24)
(23)
(33)
(29)
(16)

Passphrase Field Testing

Site	Max Length	$\frac{\text { Passphrases }}{\text { Accepted }}$	Problems
Facebook	$150+$	All	
Twitier	$150-+$	All	
Instagram	$150+$	All	
Vine	100	All	
Linkedlln	150	All	
Pinterest	$85 *$	All	Silenily trunceates

Passphrase Field Testing

Site	Max Length	Passphrases Accepted	Problems
Amazon	$150+$	All	
E'bely	64	H4, 8	Silently iruncates, cherracter complexity required
AjjExpress	20	None	No spaces or other symbols allowed, max length too short
Wealssamit	12	None	No spaces elllowed
Target	20	\#5	Character complexity required, max lengith too short
Ikeel	20	None	Charecter complexity required, mak lengith too shiort
Home Depot	$150+$	AII	Some symbols parsed differently

Passphrase Field Testing

Site	Max Length	Passphrases Accepted	Problems
PayPal	20	H5	No spaces allowed, max length too short
Chese	32	\% 4	No speaces allowed, no repeating character > 2, nalx. lengith too short
Discover	32	H2	character complexity required, max lengtih too short
Cointese	72	AJ]	Silent irunceition
Kraken	128	\#1345	Strange variable character complexity requirements

When Should You Use Passphrases?

- When you have to type it regularly
- When your password manager isn't usable or easily compatible
- When a particular keyboard makes them preferential to enter versus random passwords
- When you will share it with someone via voice
- For security question answers
- For everything else rely on password managers and random strings

How to Support Passphrase Use

- Don't impose unnecessary maximum password length restrictions
- Avoid restricting symbol use (and space)
- If scanning for common words evaluate context of that word before rejecting
- Enforce these standards throughout app(s)
- Provide guidance on, and examples of, good passphrase use - ideally complete systems

WHICH CHARACTERS ARE REQUIRED IN MY PASSWORD?

HINT: it depends on password length!

References

1. Linguistic Properties of Multi-word Passphrases, J. Bonneau, E. Shutova, 16th International Conference on Financial Cryptography and Data Security, 2012
2. 8x GTX Titan X cudaHashcat Benchmark, Jeremi Gosney, posted Jun 3, 2015, https://gist.github.com/epixoip/63c2ad11baf7bbd57544
3. Correct Horse Battery Staple: Exploring the Usability of System-Assisted Passphrases, Richard Shay, Patrick Gage Kelly, Saranga Komanduri, Michelle L. Mazurek, Blase Ur, Timothy Vidas, Lujo Bauer, Nicholas Christin, Lorrie Faith Cranor, Symposium on Usable Privacy and Security (SOUPS), Jul 2012

References

4. A Behavioral Analysis of Passphrase Design and Effectiveness, Mark Keith, Benjamin Shao, Paul Steinbart, Journal of the Association for Information Systems, Vol 10, Issue 2, Feb 2009
5. Towards Reliable Storage of 56-bit Secrets in Human Memory, Joseph Bonneau, Stuart Schechter, 23rd USENIX Security Symposium, Aug 2014
6. Can Long Passwords Be Secure and Usable?, Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L. Mazurek, Sean M. Segreti, Blase Ur, Luho Bauer, Nicolas Christin, Lorrie Faith Cranor, CHI '14, Apr 2014

For More Information

- PasswordResearch.com/Passphrases/
- Bruce K. Marshall @PwdRsch on Twitter
- bkmarshall@passwordresearch.com

